Introduction to Dot Product

- ◆ Dot Product: A way to "multiply" vectors. To calculate, _____ "like" components, then _____ the values.
 - Generally represents how close the vectors are to pointing in the *same* direction.

EXAMPLE

Complete the following vector operations below.

(A) $\vec{u} \cdot \vec{w}$

(B) $\overrightarrow{v} \cdot \overrightarrow{w}$

(C) $\vec{u} \cdot (\vec{w} + \vec{v})$

◆ When the dot product between two vectors is _____, the vectors are perpendicular.

PRACTICE

If vectors $\vec{v} = \langle 4,3 \rangle$ and $\vec{u} = \langle 9,1 \rangle$, calculate $\vec{v} \cdot \vec{u}$.

PRACTICE

If vectors $\vec{v}=12\hat{\imath}$ and $\vec{u}=100\hat{\jmath}$, calculate $\vec{u}\cdot\vec{v}$.

PRACTICE

If vectors $\vec{a}=13\hat{\imath},\,\vec{b}=5\hat{\imath}-12\hat{\jmath},\,$ and $\vec{c}=24\hat{\jmath},\,$ calculate $\vec{b}\cdot(\vec{a}-\vec{c}).$

Find the Angle Between Two Vectors

◆ The dot product can be found using the magnitudes and ______ between two vectors.

ullet To find the smallest angle between 2 vectors, rearrange the dot product formula & solve for θ .

EXAMPLE

If the dot product for vectors $|\vec{a}| = 4$ and $|\vec{b}| = 8$ is: $\vec{a} \cdot \vec{b} = 16$, find the *angle* between vectors $\vec{a} \& \vec{b}$.

PRACTICE

If vectors $|\vec{a}|=3$ and $|\vec{b}|=7$, and $\vec{a}\cdot\vec{b}=14.85$, determine the angle between vectors $\vec{a} \& \vec{b}$.

PRACTICE

If vectors $\vec{a}=4\hat{\imath}$ and $\vec{b}=3\hat{\imath}-2\hat{\jmath}$ determine the angle between vectors $\vec{a} \ \& \ \vec{b}$.

PRACTICE

If vectors $|\vec{v}|=12$, $|\vec{u}|=100$ and the angle between $\vec{v} \& \vec{u}$ is $\theta=\frac{\pi}{6}$, calculate $\vec{v} \cdot \vec{u}$.