# **Calculating Area of SAS Triangles**

◆ Recall: To find the area of any triangle, you always need the *height*. When not given, you can find it using \_\_\_\_\_.

**EXAMPLE** 

Determine the area of the triangles.



**EXAMPLE** 

Find the area of the triangle.





## **Calculating Area of ASA Triangles**

- ◆ Recall: To calculate the area of a triangle when not given height, find it using sin.
  - ▶ For ASA triangles, use either **Law of Sines** or **Cosines** to find missing side(s) and/or angle(s).

**EXAMPLE** 

Calculate the area of the triangle:  $A=40^{\circ}$  ,  $C=60^{\circ}$  , b=4





**PRACTICE** 

Find the area of the triangle:  $A=30^{\circ}$ , b=10 m,  $B=80^{\circ}$ 

Recall
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$
(Law of Sines)
$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$b^2 = a^2 + c^2 - 2ac \cdot \cos B$$

$$c^2 = a^2 + b^2 - 2ab \cdot \cos C$$
(Law of Cosines)
$$Area = \begin{cases} \frac{1}{2}b \cdot c \sin A \\ \frac{1}{2}a \cdot c \sin B \\ \frac{1}{2}a \cdot b \sin C \end{cases}$$