i & j Notation

- ◆ Unit Vector: magnitude of __ in any direction. Unit vectors in +x & +y directions: __ ("i − hat") & __ ("j − hat")
 - We can use $\hat{i} \& \hat{j}$ to write vectors in a new notation.

Recall	Component Form	New	i & j Notation
y 5 4 3 2	$\vec{v} = \langle 4, 3 \rangle$	y 5 4 3 2 1 1 v	Multiply $\begin{bmatrix} x \mid y \end{bmatrix}$ component by $\begin{bmatrix} \hat{\imath} \mid \hat{\jmath} \end{bmatrix}$ Multiply $\begin{bmatrix} x \mid y \end{bmatrix}$ component by $\begin{bmatrix} \hat{\imath} \mid \hat{\jmath} \end{bmatrix}$ $= 4 \cdot \underline{+} 3 \cdot \underline{-}$

EXAMPLE

Write the vector using $\hat{\imath}$ & $\hat{\jmath}$ notation, given $\vec{u}=\langle 2,4\rangle,\ \vec{v}=\langle 1,0\rangle$

(A) ₁

 \vec{u}

(B)

C)

(D)

 $(\vec{u} - 2\vec{v})$

ullet Like component form, to perform operations using $\hat{\imath} \& \hat{\jmath}$ notation, just +,-, or \times by the ______.

PRACTICE

If vector $\vec{v}=12\hat{\imath}-2\hat{\jmath}$ and vector $\vec{u}=5\hat{\imath}+20\hat{\jmath}$ calculate $2\vec{v}-2\vec{u}$ using $\hat{\imath}\&\hat{\jmath}$ notation.

PRACTICE

If vector $\vec{v}=11\hat{\jmath}$ and vector $\vec{u}=10\hat{\imath}-25\hat{\jmath}$ calculate $\vec{v}+\frac{1}{5}\vec{u}$ using $\hat{\imath} \& \hat{\jmath}$ notation.

PRACTICE

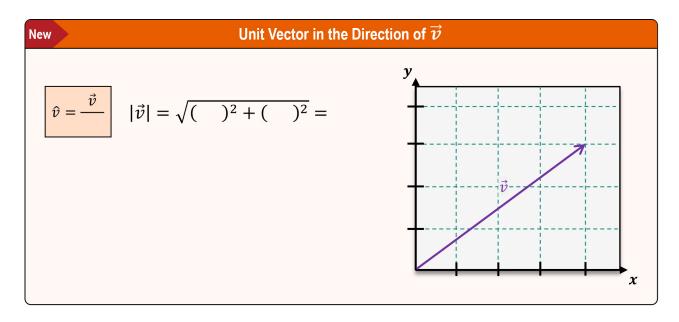
If vector $\vec{a}=20\hat{\imath}$ and vector $\vec{b}=50\hat{\jmath}$ calculate $\vec{a}-\vec{b}$ using $\hat{\imath} \& \hat{\jmath}$ notation.

Unit Vector in the Direction of a Given Vector

- ◆ Recall: **Unit Vector** has a magnitude of 1 in *any* direction.
 - Given \vec{v} , find the unit vector (\hat{v}) in the same *direction* by dividing each component by the _____ of \vec{v} .

EXAMPLE

Find the unit vector \hat{v} in the same direction of $\vec{v} = 4\hat{\imath} + 3\hat{\jmath}$.



EXAMPLE

Show that \hat{v} in the example above is a unit vector ($|\hat{v}| = 1$).

EXAMPLE

Find the unit vector \hat{u} in the direction of vector $u=-\hat{\imath}+2\hat{\jmath}.$

 $|\vec{u}| = \underline{\hspace{1cm}}$

 $\hat{u} = \underline{\hspace{1cm}}$

PRACTICE

Find the unit vector in the direction of $\vec{a} = 6\hat{\imath} + 3\hat{\jmath}$.

PRACTICE

Find the unit vector in the direction of $\vec{v} = 12\hat{\imath} - 35\hat{\jmath}$.

EXAMPLE

If vectors $\vec{a}=\langle -1,3\rangle,\ \vec{b}=\langle 4,7\rangle$ and $\vec{c}=4\vec{a}+2\vec{b}$, find the unit vector in the direction of \vec{c} .