45-45-90 Triangles

- ◆ In triangles with 45° angles, the 2 legs are always the _____ length.
 - ▶ The hypotenuse will always be a multiple of the leg length, which you can find using:

 $hyp = leg \cdot \underline{\qquad}$ (45 - 45 - 90)

EXAMPLE

Solve for the unknown side(s) of each triangle.

11

45°

PRACTICE

Given the triangle below, determine the missing side(s) without using the Pythagorean theorem (make sure your answer is fully simplified).

PRACTICE

Without using a calculator, determine all values of P in the interval $[0, 90^{\circ})$ with the following trigonometric function value.

$$\csc P = \sqrt{2}$$

Common Trig Functions For 45-45-90 Triangles

◆ The common trig functions follow a specific pattern for 45-45-90 triangles.

New	Trig Function Values for 45-45-90 Triangle				
sin	$=\frac{\mathrm{Opp}}{\mathrm{Hyp}}=$	csc	$=\frac{1}{sin(\theta)}=$		
cos	$=\frac{Adj}{Hyp}=$	sec	$=\frac{1}{\cos(\theta)}=$		
tan	$=\frac{\mathrm{Opp}}{\mathrm{Adj}}=$	cot	$=\frac{1}{tan(\theta)}=$		

30-60-90 Triangles

◆ For the 30-60-90 triangle, relate side lengths to the *shortest* leg.

EXAMPLE

Solve for the unknown sides of each triangle.

(A) 8 30°

PRACTICE

Given the triangle below, determine the missing side(s) without using the Pythagorean theorem (make sure your answer is fully simplified).

PRACTICE

Without using a calculator, determine all values of A in the interval $\left[0,\frac{\pi}{2}\right)$ with the following trigonometric function value.

$$\cos A = \frac{\sqrt{3}}{2}$$

Common Trig Functions For 30-60-90 Triangles

◆ The common trig functions follow a specific pattern for 30-60-90 triangles.

New	Trig Function Values for 30-60-90 Triangle		
sin	$= \frac{Opp}{Hyp} =$	60°	
cos	$= \frac{\mathbf{Adj}}{\mathbf{Hyp}} =$	60°	
tan	$= \frac{\mathbf{Opp}}{\mathbf{Adj}} =$	60°	
csc	$=\frac{1}{\sin(\theta)}=$	60°	
sec	$= \frac{1}{\cos(\theta)} =$	60°	
cot	$=\frac{1}{tan(\theta)}=$	60°	

