MASTER TABLE: TRIG IDENTITIES

◆ **NOTE**: This table spans multiple videos.

TRIG IDENTITIES				
Name	Identity	Example	Use when	
Reciprocal	$\csc \theta = \frac{1}{\sin \theta}$ $\sec \theta = \frac{1}{\cos \theta}$	$\sec\frac{\pi}{3} = \frac{1}{\cos\frac{\pi}{3}} = \frac{1}{\left(\frac{1}{2}\right)} = 2$		
	$\cot \theta = \frac{1}{\tan \theta}$		You need to rewrite an expression in terms of sin & cos	
Quotient	$\tan \theta = \frac{\sin \theta}{\cos \theta}$ $\cos \theta$	$\tan\frac{\pi}{4} = \frac{\sin\frac{\pi}{4}}{\cos\frac{\pi}{4}} = \frac{\left(\frac{\sqrt{2}}{2}\right)}{\left(\frac{\sqrt{2}}{2}\right)}$	torrilo di sili di cos	
	$\cot \theta = \frac{\cos \theta}{\sin \theta}$	(2)		
Even – Odd	$\cos(-\theta) = \underline{\qquad} \cos\theta$ $\sin(-\theta) = \underline{\qquad} \sin\theta$	$\cos\left(-\frac{\pi}{4}\right) =$	argument is	
	$\tan(-\theta) = \underline{\qquad} \tan \theta$	$\csc\left(\frac{\pi}{6}\right) =$		
Pythagorean	$\sin^2\theta + \cos^2\theta = 1$	$\sin^2 \frac{11\pi}{6} + \cos^2 \frac{11\pi}{6} =$	you soo trig functions	
	θ + =θ		you see trig functions	
<u> </u>	+θ =θ			
<u>,,-</u> :	$\sin(a \pm b) = \underline{\qquad} a \underline{\qquad} b \pm \underline{\qquad} a \underline{\qquad} b$	$\sin\left(\frac{\pi}{2} + \frac{\pi}{6}\right) =$	argument contains a ,	
Sum & Diff.	$\cos(a \pm b) = \underline{\qquad} a \underline{\qquad} b \mp \underline{\qquad} a \underline{\qquad} b$	2 0	OP multiples of	
	$\tan(a \pm b) = \frac{\tan a \pm \tan b}{1 \mp \tan a \tan b}$		OR multiples of 15° or $\frac{\pi}{12}$	
	$\sin 2\theta = 2\underline{\hspace{1cm}}$	$\cos^2 \frac{\pi}{12} - \sin^2 \frac{\pi}{12} =$	argument contains	
Double Angle	$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$	12 12		
	$= 1 - 2\sin^2\theta$		OR	
	$=2\cos^2\theta-1$		you recognize a of the	
	$\tan 2\theta = \frac{2\tan\theta}{1 - \underline{\qquad}^2 \theta}$		identity	

Even & Odd Identities

• If you know a function is **even** or **odd**, you can easily find $f(\underline{\hspace{1cm}})$.

◆ An **identity** is an equation which is TRUE for _____ possible values.

TRIG IDENTITIES			
Name	Identity	Example	Use when
	$\cos(-\theta) = \underline{\qquad} \cos\theta$	$\cos\left(-\frac{\pi}{4}\right) =$	argument is
Even – Odd	$\sin(-\theta) = \underline{\qquad} \sin\theta$	$\csc\left(-\frac{\pi}{6}\right) =$	
	$\tan(-\theta) = \underline{\qquad} \tan \theta$		

EXAMPLE

Use the even/odd identities to rewrite the expression with no negative arguments in terms of one trig function.

$$(A) - \tan(-\theta)$$

$$\frac{\sin(-\theta)}{\cos(-\theta)}$$

Recall
$$\sin(-\theta) = -\sin\theta$$

$$\cos(-\theta) = \cos\theta$$

$$\tan(-\theta) = -\tan\theta$$
(Even – Odd Identities)

PRACTICE

Use the even-odd identities to evaluate the expression.

(A)
$$\cos(-\theta) - \cos\theta$$

$$(B) - \cot(\theta) \cdot \sin(-\theta)$$

PRACTICE

Use the even-odd identities to evaluate the expression.

(A)

$$\sec\left(-\frac{4\pi}{5}\right)$$

$$\cos \frac{4\pi}{5}$$

$$-\cos\frac{4\pi}{5}$$

$$\sec \frac{4\pi}{5}$$

$$\cos\frac{4\pi}{5} \qquad -\cos\frac{4\pi}{5} \qquad \sec\frac{4\pi}{5} \qquad -\sec\frac{4\pi}{5}$$

Recall

$$\sin(-\theta) = -\sin\theta$$

$$\cos(-\theta) = \cos\theta$$

$$\tan(-\theta) = -\tan\theta$$

$$-\sin 38^{\circ}$$
 $-\sin(-38^{\circ})$

Pythagorean Identities

- ◆ You'll need the **Pythagorean Identities** to simplify expressions with _____ trig functions.
 - ▶ These identities come from combining the Pythagorean Theorem with the Unit Circle.

$$a^2 + b^2 = c^2$$
$$y^2 + x^2 = 1$$

TRIG IDENTITIES			
Name	Identity	Example	Use when
ythagorean	$\sin^2\theta + \cos^2\theta = 1$	$\sin^2 \frac{11\pi}{6} + \cos^2 \frac{11\pi}{6} =$	you see trig functions
	θ + =θ		squared.
Pyth	+θ=θ		

◆ To rewrite trig expressions, you'll need to recognize different _____ of the Pythagorean Identities.

EXAMPLE

Use the Pythagorean Identities to rewrite the expression as a single term.

(A)
$$\sec^2 \theta - \tan^2 \theta$$

$$(B) \qquad (1 - \cos \theta)(1 + \cos \theta)$$

EXAMPLE

Use the Pythagorean Identities to rewrite the expression as a single term.

$$\frac{1}{1 + \cos \theta}$$

Recall $\sin(-\theta) = -\sin\theta$ $\cos(-\theta) = \cos\theta$ $\tan(-\theta) = -\tan\theta$ (Even – Odd Identities)

PRACTICE

Use the Pythagorean Identities to rewrite the expression as a single term.

$$(1+\csc\theta)(1-\csc\theta)$$

PRACTICE

Use the Pythagorean Identities to rewrite the expression with no fraction.

$$\frac{1}{1-\sec\theta}$$

Simplifying Trig Expressions

◆ You'll need to use ALL trig identities to *fully* simplify expressions.

EXAMPLE

Simplify the expression.

(A) $\tan(-\theta) \cdot \csc \theta$

 $(B) \frac{\sin^2 \theta}{1 + \cos \theta}$

HOW TO: Fully Simplify Trig Expressions

Trig expressions are fully simplified when...

- all arguments are _____
- expression contains NO _____
- expression contains as few trig fcns as possible

Strategies:

- Constantly scan for identities
- ◆ Add fractions using a common denominator
- ◆ Break down in terms of _____ & ____
- If $1 \pm \operatorname{trig}(\theta)$, multiply top & bottom by $1 \mp \operatorname{trig}(\theta)$
- ◆ Factor

Recall Fundamental Trig Identities

$$\frac{\text{Reciprocal & Quotient}}{\text{Reciprocal & Quotient}}$$

$$\csc\theta = \frac{1}{\sin\theta} \quad \sec\theta = \frac{1}{\cos\theta} \quad \cot\theta = \frac{1}{\tan\theta}$$

$$\tan\theta = \frac{\sin\theta}{\cos\theta} \quad \cot\theta = \frac{\cos\theta}{\sin\theta}$$

$$\frac{\text{Even/Odd}}{\sin(-\theta)} = -\sin\theta \quad \sin^2\theta + \cos^2\theta = 1$$

$$\cos(-\theta) = \cos\theta \quad \tan^2\theta + 1 = \sec^2\theta$$

$$\tan(-\theta) = -\tan\theta \quad 1 + \cot^2\theta = \csc^2\theta$$

EXAMPLE

Simplify the expression.

(A)
$$\frac{\sin^2 \theta - \tan^2 \theta}{\sin \theta + \tan \theta}$$

$$\frac{\cos\theta + \csc\theta}{\cos\theta} + \frac{\sin\theta - \sec\theta}{\sin\theta}$$

HOW TO: Fully Simplify Trig Expressions

Trig expressions are fully simplified when...

- □ all arguments are positive
- expression contains NO fractions
- expression contains as few trig fcns as possible

Strategies:

- ◆ Constantly scan for identities
- ◆ Add fractions using a common denominator
- ◆ Break down in terms of sin & cos
- ♦ If $1 \pm \text{trig}(\theta)$, multiply top & bottom by $1 \mp \text{trig}(\theta)$
- ◆ Factor

Recall Fundamental Trig Identities				
Reciprocal & Quotient				
$\csc \theta =$	$\frac{1}{\sin \theta}$	$sec \theta =$	$=\frac{1}{\cos\theta}$	$\cot \theta = \frac{1}{\tan \theta}$
	$\tan \theta =$	$\frac{\sin \theta}{\cos \theta}$	$\cot \theta =$	$\frac{\cos\theta}{\sin\theta}$
	Even/Odd		<u>P</u> :	<u>ythagorean</u>
sin(-	$(\theta) = -s$	in $ heta$	$\sin^2 \theta$	$+\cos^2\theta = 1$
cos(-	θ) = cos	θ	$\tan^2 \theta$	$+1 = \sec^2 \theta$
tan(-	$(\theta) = -ta$	an $ heta$	1 + co	$t^2\theta = \csc^2\theta$

PRACTICE

Simplify the expression.

(A)

$$\tan^2 \theta - \sec^2 \theta + 1$$

(B)

$$\frac{\tan(-\theta)}{\sec(-\theta)}$$

(C) $\left(\frac{\tan^2 \theta}{\sin^2 \theta} - 1 \right) \csc^2 \theta \cos^2(-\theta)$

HOW TO: Fully Simplify Trig Expressions

Trig expressions are fully simplified when...

- all arguments are positive
- expression contains NO fractions
- expression contains as few trig fcns as possible

Strategies:

- ◆ Constantly scan for identities
- ◆ Add fractions using a common denominator
- ◆ Break down in terms of sin & cos
- ♦ If $1 \pm \text{trig}(\theta)$, multiply top & bottom by $1 \mp \text{trig}(\theta)$
- ◆ Factor

Recall	Fundamental Trig Identities			
	Reciprocal & Quotient			
$\csc\theta =$	$\frac{1}{\sin \theta}$	$\sec \theta =$	$=\frac{1}{\cos\theta}$	$\cot \theta = \frac{1}{\tan \theta}$
	$\tan \theta =$	$=\frac{\sin\theta}{\cos\theta}$	$\cot \theta =$	$=\frac{\cos\theta}{\sin\theta}$
	Even/Odd		<u>P</u>	<u>ythagorean</u>
sin(-	$(\theta) = -1$	$\sin heta$	$\sin^2 \theta$	$+\cos^2\theta = 1$
cos(-	θ) = co	s θ	$\tan^2 \theta$	$+1 = \sec^2 \theta$
tan(-	$(\theta) = -1$	$\tan heta$	1 + cc	$ot^2 \theta = \csc^2 \theta$

Verifying Trig Equations as Identities

- ◆ To verify that an equation is true, simplify ONE or BOTH sides with the goal of making them ______
 - ► ALWAYS start with the more _____ side first!

EXAMPLE

Verify the identity.

 $\frac{\sin\theta\cos\theta}{1-\cos^2\theta} = \frac{1}{\tan\theta}$

 $(B) \frac{\sec^2 \theta - \tan^2 \theta}{\cos(-\theta) + 1} = \frac{1 - \cos \theta}{\sin^2 \theta}$

STRATEGIES: Simplifying Trig Expressions

- Constantly scan for identities
- ◆ Add fractions using a common denominator
- ◆ Break down in terms of sin & cos
- ♦ If $1 \pm \operatorname{trig}(\theta)$, multiply top & bottom by $1 \mp \operatorname{trig}(\theta)$
- ◆ Factor

Recall Fundamental Trig Identities

Reciprocal & Quotient

$$csc \theta = \frac{1}{\sin \theta} \quad sec \theta = \frac{1}{\cos \theta} \quad cot \theta = \frac{1}{\tan \theta}$$

$$tan \theta = \frac{\sin \theta}{\cos \theta} \quad cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\underline{Even/Odd} \quad \underline{Pythagorean}$$

$$sin(-\theta) = -\sin \theta \quad sin^2 \theta + cos^2 \theta = 1$$

$$cos(-\theta) = \cos \theta \quad tan^2 \theta + 1 = sec^2 \theta$$

$$tan(-\theta) = -\tan \theta \quad 1 + cot^2 \theta = csc^2 \theta$$

EXAMPLE

Verify the identity by working with one side.

$$\frac{1 - \sin \theta}{\cos \theta} - \frac{\cos \theta}{1 + \sin \theta} = 0$$

STRATEGIES: Simplifying Trig Expressions

- Constantly scan for identities
- ◆ Add fractions using a common denominator
- ◆ Break down in terms of sin & cos
- lacktriangle If $1 \pm \operatorname{trig}(\theta)$, multiply top & bottom by $1 \mp \operatorname{trig}(\theta)$
- ◆ Factor

Recall Fundamental Trig Identities

Reciprocal & Quotient

$$\csc \theta = \frac{1}{\sin \theta} \qquad \sec \theta = \frac{1}{\cos \theta} \qquad \cot \theta = \frac{1}{\tan \theta}$$
$$\tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

Even/Odd

<u>Pythagorean</u>

$$\sin(-\theta) = -\sin\theta$$
 $\sin^2\theta + \cos^2\theta = 1$

$$\cos(-\theta) = \cos\theta \qquad \tan^2\theta + 1 = \sec^2\theta$$

EXAMPLE

Verify the identity by working with both sides.

$$\sec\theta (1 - \sin^2\theta) = \frac{(1 + \tan^2\theta)\cot^2\theta}{\csc^2\theta\sec\theta}$$

STRATEGIES: Simplifying Trig Expressions

- ◆ Constantly scan for identities
- ◆ Add fractions using a common denominator
- ◆ Break down in terms of sin & cos
- If $1 \pm \operatorname{trig}(\theta)$, multiply top & bottom by $1 \mp \operatorname{trig}(\theta)$
- ◆ Factor

Recall Fundamental Trig Identities Reciprocal & Quotient $csc \theta = \frac{1}{\sin \theta} \quad sec \theta = \frac{1}{\cos \theta} \quad cot \theta = \frac{1}{\tan \theta}$ $tan \theta = \frac{\sin \theta}{\cos \theta} \quad cot \theta = \frac{\cos \theta}{\sin \theta}$ $\frac{\text{Even/Odd}}{\sin \theta} \quad \frac{\text{Pythagorean}}{\sin^2 \theta + \cos^2 \theta = 1}$ $cos(-\theta) = \cos \theta \quad tan^2 \theta + 1 = \sec^2 \theta$ $tan(-\theta) = -\tan \theta \quad 1 + \cot^2 \theta = \csc^2 \theta$

PRACTICE

Identify the most helpful first step in verifying the identity.

(A)
$$\left(\frac{\tan^2 \theta}{\sin^2 \theta} - 1\right) = \sec^2 \theta \sin^2(-\theta)$$

$$\sec^3 \theta = \sec \theta + \frac{\tan^2 \theta}{\cos \theta}$$

STRATEGIES: Simplifying Trig Expressions

- Constantly scan for identities
- ◆ Add fractions using a common denominator
- ◆ Break down in terms of sin & cos
- ♦ If $1 \pm \operatorname{trig}(\theta)$, multiply top & bottom by $1 \mp \operatorname{trig}(\theta)$
- ◆ Factor

Recall Fundamental Trig Identities

Reciprocal & Quotient

$$\cot \theta = \frac{1}{\sin \theta} \quad \sec \theta = \frac{1}{\cos \theta} \quad \cot \theta = \frac{1}{\tan \theta}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \quad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\frac{\text{Even/Odd}}{\sin(-\theta)} = -\sin \theta \quad \sin^2 \theta + \cos^2 \theta = 1$$

$$\cot(-\theta) = -\tan \theta \quad 1 + \cot^2 \theta = \csc^2 \theta$$