Complex Numbers in Polar Form

ullet Complex #'s can also be written in **polar form** with r (______ from origin) & θ (_____ w/ real axis).

EXAMPLE

Write the complex number 4 + 3i in polar form.

lacktriangle When calculating heta you may need to adjust the value based on the ______

PRACTICE

Express the complex number z = 7 + 11i in polar form.

PRACTICE

Express the complex number z = 2 - 4i in polar form.

PRACTICE

Express the complex number $z=1-\frac{\sqrt{3}}{3}i$ in polar form.

Converting Complex Numbers from Polar to Rectangular Form

◆ To convert complex numbers back to rectangular form, just _______

EXAMPLE

Convert the complex number from polar to rectangular form. Identify x & y.

New Complex #'s: Polar
$$\rightarrow$$
 Rect. Form $z = 5(\cos 37^{\circ} + i \cdot \sin 37^{\circ})$ $x =$ ___ $y =$ ___

EXAMPLE

Convert the complex number from polar to rectangular form.

$$8\left(\cos\frac{\pi}{6} - i \cdot \sin\frac{\pi}{6}\right)$$

PRACTICE

Convert the complex number $z=12(\cos 90^\circ+i\cdot\sin 90^\circ)$ from polar to rectangular form.

PRACTICE

Convert the complex number $z=\sqrt{2}(\cos\frac{7\pi}{4}+i\cdot\sin\frac{7\pi}{4})$ from polar to rectangular form.