TOPIC: CROSS PRODUCT

Computing the Cross Product

◆ Like the dot product, the **cross product** is a way to _____ vectors.

Recall Dot Product	New Cross Product
\overrightarrow{v}	\overrightarrow{v}
	ALWAYS to original vectors
$ec{u}\cdotec{v}=$ [SCALAR VECTOR]	$ec{u} imesec{v}= exttt{[SCALAR VECTOR]}$

EXAMPLE

Find the cross product, $\vec{w} = \vec{u} \times \vec{v}$.

$$\vec{u} = \langle 2, 0, 1 \rangle$$
 $\vec{v} = \langle 0, -1, 2 \rangle$

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ --- & --- \\ \vdots & --- & --- \end{vmatrix}$$

HOW TO: Calculate Cross Product

- 1) Write matrix of each vector's \hat{i} , \hat{j} , \hat{k} components
- 2) Repeat \hat{i}, \hat{j} columns outside matrix

For each \overrightarrow{w} component:

- 3) Write u v v u
- 4) Multiply "_____" components diagonally (X)

TOPIC: CROSS PRODUCT

PRACTICE If vectors $\vec{v} = \langle 3, 1, 0 \rangle$, $\vec{u} = \langle 0, -2, 0 \rangle$ and $\vec{w} = \vec{v} \times \vec{u}$, find \vec{w} .

PRACTICE

If vectors $\vec{a}=5\hat{\imath}$, $\vec{b}=12\hat{k}$ and $\vec{c}=\vec{a}\times\vec{b}$, find \vec{c} .