Intro to Quadratic Equations

- If you take a linear equation and add an _____ term, you get a quadratic equation!
 - Also called a polynomial of degree 2.

$$2x - 6 = 0$$

• You will often need to write quadratic equations in standard form.

$$ax^2 + bx + c = 0$$

• All terms are on the same side in descending order of ______.

EXAMPLE: Write each given quadratic equation in standard form. Identify a, b, and c.

(A)

$$5x^2 = x - 3$$

$$b =$$

$$c =$$

$$(B) -2x^2 + \frac{5}{3} = 0$$

<u>PRACTICE</u>: Write the given quadratic equation in standard form. Identify a, b, and c.

$$-4x^2 + x = 8$$

Factoring

- To **solve** a quadratic equation, we want to find every value of _____ that makes the equation _____.
 - There are often ____ correct values of x, which we call the **solutions**, **roots**, or **zeros**.

Solving Linear Equations

$$2x - 6 = 0$$

$$2x = 6$$
$$x = 3$$

$$x = 3$$

Solving Quadratic Equations

$$x^2 - 5x + 4 = 0$$

- We will need to use something else to solve quadratic equations:
- One way to solve a quadratic equation is to **factor** from standard form, then set each factor equal to ____.

$$x^{2} + x - 6 = 0$$

$$(x+3)(x-2) = 0$$

$$0$$

• If the factors multiplied = 0, one of the factors must = 0 to make this true.

EXAMPLE: Solve the given quadratic equation by factoring.

$$x^2 - 9x = -20$$

FACTORING QUAD. EQNS

- 1) Write egn in form
- 2) _____ completely
- 3) Set factors = $_$, solve for x
- 4) Check solutions in original eqn

PRACTICE: Solve the given quadratic equation by factoring.

$$3x^2 + 12x = 0$$

FACTORING QUAD. EQNS

- 1) Write eqn in standard form
- 2) Factor completely
- **3)** Set factors = 0, solve for x
- 4) Check solutions

PRACTICE: Solve the given quadratic equation by factoring.

$$2x^2 + 7x + 6 = 0$$

The Square Root Property

- You won't always be able to factor to solve quadratics.
 - There are 3 other methods that you can use:

$$x^{2} + x - 6 = 0$$

$$(x)(x) = 0$$

$$x^{2} - 5 = 0$$

$$(x)(x) = 0$$

Factorable? [YES | NO] | Factorable? [YES | NO]

SOLVING QUADRATIC EQUATIONS							
$ax^2 + bx + c = 0$							
(Standard form)							
<u>FACTORING</u>		SQUARE ROOT PROPERTY	METHOD #3	METHOD #4			
USE IF	• Has factors OR						
STEPS	 No term (c =) 1) Write eqn in standard form 	• No term (b =) 1) squared expression					
	2) Factor completely	2) Take & square root					
	3) Set factors = 0, solve for x4) Check solutions	3) Solve for <i>x</i>4) (Optional) Check solutions					

EXAMPLE: Solve the given quadratic equations using the square root property.

(A)

$$(x+1)^2=4$$

$$4x^2 - 5 = 0$$

 Solutions aren't always whole numbers! They could have ___ and/or _

PRACTICE: Solve the given quadratic equation using the square root property.

$$\left(x - \frac{1}{2}\right)^2 - 5 = 0$$

PRACTICE: Solve the given quadratic equation using the square root property.

$$2x^2 - 16 = 0$$

Imaginary Roots

- You may get imaginary (or complex) roots when using the square root property.
 - Simplify them as you would any complex number!

EXAMPLE: Solve the given quadratic equation using the square root property.

$$4x^2 + 25 = 0$$

SQ. ROOT PROPERTY

- 1) Isolate squared expression
- 2) Take + & square root
- 3) Solve for x
- 4) (Optional) Check solutions

Note: When a and c have the same sign in standard form, you will *always* end up with a complex answer.

The Quadratic Formula

• The solutions to ANY quadratic equation in standard form can be found using the quadratic formula.

(Quadratic Formula)

SOLVING QUADRATIC EQUATIONS							
$ax^2 + bx + c = 0$							
(Standard form)							
	<u>FACTORING</u>	SQ. ROOT PROPERTY	COMPLETE THE SQUARE	QUADRATIC FORMULA			
USE IF	 Has obvious factors OR c = 0	• $(x + \#)^2 = [$ constant $]$ OR • $b = 0$	Leading coeff. is 1 ANDb is even	Can't easily Unsure what method to use			
STEPS	 Write eqn in standard form Factor completely Set factors = 0, solve for x Check solutions 	3) Solve for x	1) Simplify eqn to $x^2 + bx = c$ 2) $+ \left(\frac{b}{2}\right)^2$ to both sides 3) Factor to $\left(x + \frac{b}{2}\right)^2$ 4) Solve using sqrt prop.	1) Write eqn in standard form 2) Plug a, b, c in quad. form. $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 3) Compute & sol'ns			

EXAMPLE: Solve each equation using the quadratic formula.

$$(A) x^2 + 2x - 3 = 0$$

$$x = \frac{-(\) \pm \sqrt{(\)^2 - 4(\)(\)}}{2(\)}$$

$$(B) x^2 - 5x = -1$$

(B)
$$x^{2} - 5x = -1$$

$$x = \frac{-(\) \pm \sqrt{(\)^{2} - 4(\)(\)}}{2(\)}$$

$$x =$$
____ & $x =$ ____

PRACTICE: Solve the given quadratic equation using the quadratic formula.

$$3x^2 + 4x + 1 = 0$$

QUADRATIC FORMULA

- 1) Write eqn in standard form
- 2) Plug a, b, c in quad. form.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

3) Compute & simplify sol'ns

PRACTICE: Solve the given quadratic equation using the quadratic formula.

$$2x^2 - 3x = -3$$