
TOPIC: CONVERT EQUATIONS BETWEEN POLAR & RECTANGULAR FORM

Convert Equations from Rectangular to Polar Form

- ullet To convert eq'ns from rect. to polar, replace x & y with $r \cos \theta \& r \sin \theta$, and solve for ____.
 - ▶ Note: You can replace _____ with ___.

EXAMPLE

Convert each equation to polar form.

$$(A) y = 5$$

$$(B) \qquad v = x + 1$$

$$(\mathbf{C}) \qquad x^2 + y^2 = 25$$

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$x^{2} + y^{2} = r^{2}$$

EXAMPLE

Convert each equation to its polar form. In (\mathbf{B}) , solve for r^2 .

$$(A) y = x^2$$

$$(B) 4xy = 2$$

TOPIC: CONVERT POINTS BETWEEN POLAR & RECTANGULAR COORDINATES

PRACTICE

Convert each equation to its polar form.

$$(A) y - x = 6$$

Recall
$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$x^{2} + y^{2} = r^{2}$$

$$(B) 3y - 5x = 2$$

$$(C) x^2 + y^2 = 2y$$

$$(D) x^2 + (y-2)^2 = 4$$

TOPIC: CONVERT EQUATIONS BETWEEN POLAR & RECTANGULAR FORM

Convert Equations from Polar to Rectangular Form

• To convert from polar to rect., manipulate eqn to obtain $r\cos\theta$, $r\sin\theta$, or r^2 , then replace with x, y, or x^2+y^2 .

EXAMPLE

Convert each eqn to rectangular form and identify the shape of its graph.

$$(A) \qquad r = 4$$

$$(B) r = \sec \theta$$

(C)
$$r = 6 \sin \theta$$

HOW TO: Convert Equations from Polar to Rect.

- 1) Get $r \cos \theta$, $r \sin \theta$, or r^2 . Strategies:
 - _____ /multiply both sides by ____
 - Rewrite trig fcns in terms of _____ & ____
 - Eliminate fractions by mult. both sides by _____
- 2) Replace $r \cos \theta$, $r \sin \theta$, or r^2
- 3) Rewrite equation in its "standard form"
 - If $x^2 + y^2 = \# \cdot x$ or $\# \cdot y$, complete the square
 - If $\sqrt{\ }$, eliminate by squaring *both* sides

Recall

$$x = r\cos\theta \qquad y = r\sin\theta$$
$$x^2 + y^2 = r^2$$

TOPIC: CONVERT EQUATIONS BETWEEN POLAR & RECTANGULAR FORM

EXAMPLE

Convert the equation to rectangular form and identify the shape of its graph.

$$r = \frac{2}{1 + \cos \theta}$$

HOW TO: Convert Equations from Polar to Rect.

- 1) Get $r \cos \theta$, $r \sin \theta$, or r^2 . Strategies:
 - Square/multiply both sides by r
 - Rewrite trig fcns in terms of sin & cos
 - Eliminate fractions by mult. both sides by denom.
- **2)** Replace $r \cos \theta$, $r \sin \theta$, or r^2
- 3) Rewrite equation in its "standard form"
 - If $x^2 + y^2 = \# \cdot x$ or $\# \cdot y$, complete the square
 - If $\sqrt{\ }$, eliminate by squaring *both* sides

$$x = r\cos\theta \qquad y = r\sin\theta$$

$$x^2 + y^2 = r^2$$

PRACTICE Convert each equation to its rectangular form.

$$(A) \qquad r = -4\cos\theta$$

$$(B) \qquad r = \frac{2}{1 - \sin \theta}$$